Search results
Results from the WOW.Com Content Network
Collision theory is a principle of chemistry used to predict the rates of chemical reactions. It states that when suitable particles of the reactant hit each other with the correct orientation, only a certain amount of collisions result in a perceptible or notable change; these successful changes are called successful collisions.
Transition state theory explains the dynamics of reactions. The theory is based on the idea that there is an equilibrium between the activated complex and reactant molecules. The theory incorporates concepts from collision theory, which states that for a reaction to occur, reacting molecules must collide with a minimum energy and correct ...
In early 1900, Max Trautz and William Lewis studied the rate of the reaction using collision theory, based on the kinetic theory of gases. Collision theory treats reacting molecules as hard spheres colliding with one another; this theory neglects entropy changes, since it assumes that the collision between molecules are completely elastic.
The activated intermediate is produced from the reactant only after a sufficient activation energy is acquired by collision with a second molecule M, which may or may not be similar to A. It then either deactivates from A* back to A by another collision, or reacts in a unimolecular step to produce the product(s) P. The two-step mechanism is then
Upon exiting the collision cell, the fragmented ions then travel onto the second quadrupole mass filter, Q3, where m/z selection can occur again. Because the triple quadrupole is a scanning instrument, the type of detection system it employs must be capable of detecting ions one m/z at a time.
According to collision theory, the frequency factor, A, depends on how often molecules collide when all concentrations are 1 mol/L and on whether the molecules are properly oriented when they collide. Values of A for some reactions can be found at Collision theory.
In the high-density regime, the theory can be adapted to account for collisional transport of momentum and energy, i.e. transport over a molecular diameter during a collision, rather than over a mean free path (in between collisions). Including this mechanism predicts a density dependence of the viscosity at high enough density, which is also ...
Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate.