Search results
Results from the WOW.Com Content Network
Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading. It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total wetted area. One method for estimating the zero-lift drag coefficient of an aircraft is the ...
The power is equal to the drag force times velocity. For aircraft in cruise flight the lift is equal to the weight (L=mg) and the engine thrust is equal to the drag (T=D). Hence, ϵ = P / ( m g v ) = D / L = 1 / f {\displaystyle \epsilon =P/(mgv)=D/L=1/f} , with f=L/D the lift-to-drag ratio , so the specific resistance of airplanes is roughly ...
Drag and lift coefficients for the NACA 63 3 618 airfoil. Full curves are lift, dashed drag; red curves have R e = 3·10 6, blue 9·10 6. Coefficients of lift and drag against angle of attack. Curve showing induced drag, parasitic drag and total drag as a function of airspeed. Drag curve for the NACA 63 3 618 airfoil, colour-coded as opposite plot.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...
The lift-induced drag decreases with the square of velocity. As a result, the total drag (the sum of both components) typically has a minimum value. In practice, the validity of these curves is limited by the occurrence of stall on the left side, and by compressibility effects on the right side.
It is also useful to show the relationship between section lift coefficient and drag coefficient. The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of ′, the lift force per unit span of the wing. The ...
The logarithmic term with weight ratios is replaced by the direct ratio between / = where is the energy per mass of the battery (e.g. 150-200 Wh/kg for Li-ion batteries), the total efficiency (typically 0.7-0.8 for batteries, motor, gearbox and propeller), / lift over drag (typically around 18), and the weight ratio / typically around 0.3.