Search results
Results from the WOW.Com Content Network
The definition of tautology can be extended to sentences in predicate logic, which may contain quantifiers—a feature absent from sentences of propositional logic. Indeed, in propositional logic, there is no distinction between a tautology and a logically valid formula. In the context of predicate logic, many authors define a tautology to be a ...
Tautology may refer to: Tautology (language), a redundant statement in literature and rhetoric; Tautology (logic), in formal logic, a statement that is true in every ...
In literary criticism and rhetoric, a tautology is a statement that repeats an idea using near-synonymous morphemes, words or phrases, effectively "saying the same thing twice". [ 1 ] [ 2 ] Tautology and pleonasm are not consistently differentiated in literature. [ 3 ]
Definition 2: If is a propositional connective, and A, B, C, … is a sequence of m, possibly but not necessarily atomic, possibly but not necessarily distinct, formulas, then the result of applying to A, B, C, … is a formula.
In propositional logic, tautology is either of two commonly used rules of replacement. [ 1 ] [ 2 ] [ 3 ] The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs .
It is a manifestation of tautology by traditional rhetorical criteria. [4] Pleonasm may also be used for emphasis, or because the phrase has become established in a certain form. Tautology and pleonasm are not consistently differentiated in literature.
However, the term tautology is also commonly used to refer to what could more specifically be called truth-functional tautologies. Whereas a tautology or logical truth is true solely because of the logical terms it contains in general (e.g. " every ", " some ", and "is"), a truth-functional tautology is true because of the logical terms it ...
Formulas and are logically equivalent if and only if the statement of their material equivalence is a tautology. [ 2 ] The material equivalence of p {\displaystyle p} and q {\displaystyle q} (often written as p ↔ q {\displaystyle p\leftrightarrow q} ) is itself another statement in the same object language as p {\displaystyle p} and q ...