Search results
Results from the WOW.Com Content Network
Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.
The outer product contrasts with: The dot product (a special case of "inner product"), which takes a pair of coordinate vectors as input and produces a scalar; The Kronecker product, which takes a pair of matrices as input and produces a block matrix; Standard matrix multiplication
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
A common variation of gemm is the gemm3m, which calculates a complex product using "three real matrix multiplications and five real matrix additions instead of the conventional four real matrix multiplications and two real matrix additions", an algorithm similar to Strassen algorithm first described by Peter Ungar. [24]
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
The name "dot product" is derived from the dot operator " · " that is often used to designate this operation; [1] the alternative name "scalar product" emphasizes that the result is a scalar, rather than a vector (as with the vector product in three-dimensional space).
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
For the example below, there are four sides: A, B, C and the final result ABC. A is a 10×30 matrix, B is a 30×5 matrix, C is a 5×60 matrix, and the final result is a 10×60 matrix. The regular polygon for this example is a 4-gon, i.e. a square: The matrix product AB is a 10x5 matrix and BC is a 30x60 matrix.