Ad
related to: klein's line scfe 1 2 stepzoro.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
Klein's line or the line of Klein is a virtual line that can be drawn on an X-ray of an adolescent's hip parallel to the anatomically upper edge of the femoral neck.It was the first tool to aid in the early diagnosis of a slipped capital femoral epiphysis (SCFE), which if treated late or left untreated leads to crippling arthritis, leg length discrepancy and lost range of motion.
Trethowan's sign is when Klein's line does not intersect the lateral part of the superior femoral epiphysis on an AP radiograph of the pelvis. [1]
The angle is measured on a frog lateral view of the bilateral hips. It is measured by drawing a line perpendicular to a line connecting two points at the posterior and anterior tips of the epiphysis at the physis. A third line is drawn down the axis of femur. The angle between the perpendicular line and the femoral shaft line is the angle.
SCFE is a Salter-Harris type 1 fracture (fracture through the physis or growth plate) through the proximal femoral physis, which can be distinguished from other Salter-Harris type 1 fractures by identifying prior epiphysiolysis, an intact (in chronic SCFE) or partially torn (in acute SCFE) periosteum, and the displacement being slower. Stress ...
On the AP view Klein’s line, tangent to the lateral aspect of the femoral neck, does not intersect the femoral head indicating that it is displaced. SCFE may compromise the blood supply to the femoral head and cause avascular necrosis, mainly when there is instability between the fragments. [1]
[2] The positive Drehmann sign is a typical clinical feature in slipped capital femoral epiphysis (SCFE), the impingement syndrome of the acetabulum-hip , or in osteoarthritis of the hip joint. [ 3 ]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Klein surfaces were introduced by Felix Klein in 1882. [1] A Klein surface is a surface (i.e., a differentiable manifold of real dimension 2) on which the notion of angle between two tangent vectors at a given point is well-defined, and so is the angle between two intersecting curves on the surface. These angles are in the range [0,π]; since ...
Ad
related to: klein's line scfe 1 2 stepzoro.com has been visited by 1M+ users in the past month