enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric algebra - Wikipedia

    en.wikipedia.org/wiki/Symmetric_algebra

    The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form x ⊗ y − y ⊗ x. All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring .

  3. Minimal residual method - Wikipedia

    en.wikipedia.org/wiki/Minimal_residual_method

    The MINRES method iteratively calculates an approximate solution of a linear system of equations of the form =, where is a symmetric matrix and a vector. For this, the norm of the residual r ( x ) := b − A x {\displaystyle r(x):=b-Ax} in a k {\displaystyle k} -dimensional Krylov subspace V k = x 0 + span ⁡ { r 0 , A r 0 … , A k − 1 r 0 ...

  4. Conjugate residual method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_residual_method

    The conjugate residual method is an iterative numeric method used for solving systems of linear equations. It's a Krylov subspace method very similar to the much more popular conjugate gradient method, with similar construction and convergence properties. This method is used to solve linear equations of the form

  5. Macaulay2 - Wikipedia

    en.wikipedia.org/wiki/Macaulay2

    Macaulay2 is built around fast implementations of algorithms useful for computation in commutative algebra and algebraic geometry. This core functionality includes arithmetic on rings, modules, and matrices, as well as algorithms for Gröbner bases, free resolutions, Hilbert series, determinants and Pfaffians, factoring, and similar.

  6. Generalized minimal residual method - Wikipedia

    en.wikipedia.org/wiki/Generalized_minimal...

    The Arnoldi iteration reduces to the Lanczos iteration for symmetric matrices. The corresponding Krylov subspace method is the minimal residual method (MinRes) of Paige and Saunders. Unlike the unsymmetric case, the MinRes method is given by a three-term recurrence relation. It can be shown that there is no Krylov subspace method for general ...

  7. Multigrid method - Wikipedia

    en.wikipedia.org/wiki/Multigrid_method

    Originally described in Xu's Ph.D. thesis [9] and later published in Bramble-Pasciak-Xu, [10] the BPX-preconditioner is one of the two major multigrid approaches (the other is the classic multigrid algorithm such as V-cycle) for solving large-scale algebraic systems that arise from the discretization of models in science and engineering ...

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Two-sided Jacobi SVD algorithm—a generalization of the Jacobi eigenvalue algorithm—is an iterative algorithm where a square matrix is iteratively transformed into a diagonal matrix. If the matrix is not square the QR decomposition is performed first and then the algorithm is applied to the R {\displaystyle R} matrix.

  9. Successive over-relaxation - Wikipedia

    en.wikipedia.org/wiki/Successive_over-relaxation

    To solve the equations, we choose a relaxation factor = and an initial guess vector = (,,,). According to the successive over-relaxation algorithm, the following table is obtained, representing an exemplary iteration with approximations, which ideally, but not necessarily, finds the exact solution, (3, −2, 2, 1) , in 38 steps.