Search results
Results from the WOW.Com Content Network
[10] Without added salt the main products are alcohol B (42%) from nucleophilic addition to the carbonyl group and diene C (48%) as its dehydration reaction product. With added salt the main product is 1,4-adduct A (82%) with some C (7%). A 1,6-addition is also possible, for example in one step of the commercial-scale production of fulvestrant ...
2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron, will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt, such as iron(II) sulfate: Fe (s) + H 2 SO 4 (l) → FeSO 4 (aq) + H 2 (g) There is some ambiguity at the borderlines ...
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
The activated complex is an arrangement of atoms in an arbitrary region near the saddle point of a potential energy surface. [1] The region represents not one defined state, but a range of unstable configurations that a collection of atoms pass through between the reactants and products of a reaction.
Compare the atomic number (Z) of the atoms directly attached to the stereocenter; the group having the atom of higher atomic number Z receives higher priority (i.e. number 1). If there is a tie, the atoms at distance 2 from the stereocenter have to be considered: a list is made for each group of further atoms bonded to the one directly attached ...
In chemistry, Bent's rule describes and explains the relationship between the orbital hybridization and the electronegativities of substituents. [1] [2] The rule was stated by Henry A. Bent as follows: [2] Atomic s character concentrates in orbitals directed toward electropositive substituents.
[1] [2] At chemical equilibrium or in phase equilibrium, the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a minimum. [3] [4] [5] In a system in diffusion equilibrium, the chemical potential of any chemical species is uniformly the same everywhere throughout the system. [6]
Consider the simple example where the catalyst associates with substrate A, followed by reaction with B to form product, P and free catalyst. Regardless of the approximation applied, multiple independent parameters (k 1, k −1, and k 2 in the case of steady-state; k 2 and K 1 in the case of pre-equilibrium) are required to define the system ...