Search results
Results from the WOW.Com Content Network
The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one.
In words: the first two numbers in the sequence are both 2, and each successive number is formed by adding twice the previous Pell–Lucas number to the Pell–Lucas number before that, or equivalently, by adding the next Pell number to the previous Pell number: thus, 82 is the companion to 29, and 82 = 2 × 34 + 14 = 70 + 12. The first few ...
The solutions of the Pell's equation X 2 − DY 2 = 1, a Diophantine equation that has been widely studied, are the units of these rings, for D ≡ 2, 3 (mod 4). For D = 5, ω = 1+ √ 5 / 2 is the golden ratio. This ring was studied by Peter Gustav Lejeune Dirichlet. Its units have the form ±ω n, where n is an arbitrary integer
A necessary (but not sufficient) condition for solvability is that n is not divisible by 4 or by a prime of form 4k + 3. [note 3] Thus, for example, x 2 − 3 y 2 = −1 is never solvable, but x 2 − 5 y 2 = −1 may be. [27] The first few numbers n for which x 2 − n y 2 = −1 is solvable are with only one trivial solution: 1
In algebraic number theory, a fundamental unit is a generator (modulo the roots of unity) for the unit group of the ring of integers of a number field, when that group has rank 1 (i.e. when the unit group modulo its torsion subgroup is infinite cyclic).
The square root of 2 is algebraic over Q, since it is the root of the polynomial g(x) = x 2 − 2 whose coefficients are rational.; Pi is transcendental over Q but algebraic over the field of real numbers R: it is the root of g(x) = x − π, whose coefficients (1 and − π) are both real, but not of any polynomial with only rational coefficients.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Such a quadratic irrational may also be written in another form with a square-root of a square-free number (for example (+) /) as explained for quadratic irrationals. By considering the complete quotients of periodic continued fractions, Euler was able to prove that if x is a regular periodic continued fraction, then x is a quadratic irrational ...