Search results
Results from the WOW.Com Content Network
SQL-92 was the third revision of the SQL database query language. Unlike SQL-89, it was a major revision of the standard. Aside from a few minor incompatibilities, the SQL-89 standard is forward-compatible with SQL-92. The standard specification itself grew about five times compared to SQL-89.
Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query (,) returns the sum of all values in the range [,].
A range query is a common database operation that retrieves all records where some value is between an upper and lower boundary. [1] For example, list all employees with 3 to 5 years' experience. Range queries are unusual because it is not generally known in advance how many entries a range query will return, or if it will return any at all.
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
In computer science, an inverted index (also referred to as a postings list, postings file, or inverted file) is a database index storing a mapping from content, such as words or numbers, to its locations in a table, or in a document or a set of documents (named in contrast to a forward index, which maps from documents to content). [1]
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.
(This is just a consequence of the fact that the inverse of an N×M transpose is an M×N transpose, although it is also easy to show explicitly that P −1 composed with P gives the identity.) As proved by Cate & Twigg (1977), the number of fixed points (cycles of length 1) of the permutation is precisely 1 + gcd( N −1, M −1) , where gcd is ...