Search results
Results from the WOW.Com Content Network
Iron(III) oxide is a product of the oxidation of iron. It can be prepared in the laboratory by electrolyzing a solution of sodium bicarbonate, an inert electrolyte, with an iron anode: 4 Fe + 3 O 2 + 2 H 2 O → 4 FeO(OH) The resulting hydrated iron(III) oxide, written here as FeO(OH), dehydrates around 200 °C. [18] [19] 2 FeO(OH) → Fe 2 O 3 ...
Iron(III) oxide – Fe 2 O 3; Iron(III) nitrate – Fe(NO 3) 3 (H 2 O) 9; Iron(III) sulfate – Fe 2 (SO 4) 3; Iron(III) thiocyanate – Fe(SCN) 3; Iron(II,III) oxide – Fe 3 O 4; Iron ferrocyanide – Fe 7 (CN) 18; Prussian blue (Iron(III) hexacyanoferrate(II)) – Fe 4 [Fe(CN) 6] 3; Ammonium iron(II) sulfate – (NH 4) 2 Fe(SO 4) 2; Iron(II ...
Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. [1]
In these cases the oxidation number (the same as the charge) of the metal ion is represented by a Roman numeral in parentheses immediately following the metal ion name. For example, in uranium(VI) fluoride the oxidation number of uranium is 6. Another example is the iron oxides. FeO is iron(II) oxide and Fe 2 O 3 is iron(III) oxide.
Iron oxides feature as ferrous or ferric or both. They adopt octahedral or tetrahedral coordination geometry. Only a few oxides are significant at the earth's surface, particularly wüstite, magnetite, and hematite. Oxides of Fe II. FeO: iron(II) oxide, wüstite; Mixed oxides of Fe II and Fe III. Fe 3 O 4: Iron(II,III) oxide, magnetite; Fe 4 O ...
2) and oxides of nitrogen (NO x). The Earth's crustal rock is composed in large part of oxides of silicon (silica SiO 2, found in granite and sand), aluminium (aluminium oxide Al 2 O 3, in bauxite and corundum), iron (iron (III) oxide Fe 2 O 3, in hematite and rust) and other oxides of metals.
The term is rather uncommon for hepta-coordinate compounds of iron. [1] It has to be distinguished from the terms hypervalent and hypercoordinate, as high-valent iron compounds neither necessarily violate the 18-electron rule nor necessarily show coordination numbers > 6. The ferrate(VI) ion [FeO 4] 2− was the first structure in this class ...
Iron(II) oxide or ferrous oxide is the inorganic compound with the formula FeO. Its mineral form is known as wüstite . [ 3 ] [ 4 ] One of several iron oxides , it is a black-colored powder that is sometimes confused with rust , the latter of which consists of hydrated iron(III) oxide (ferric oxide).