Search results
Results from the WOW.Com Content Network
Interactive data transformation (IDT) [13] is an emerging capability that allows business analysts and business users the ability to directly interact with large datasets through a visual interface, [9] understand the characteristics of the data (via automated data profiling or visualization), and change or correct the data through simple ...
Data wrangling can benefit data mining by removing data that does not benefit the overall set, or is not formatted properly, which will yield better results for the overall data mining process. An example of data mining that is closely related to data wrangling is ignoring data from a set that is not connected to the goal: say there is a data ...
The actual data mining task is the semi-automatic or automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining, sequential pattern mining).
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
KNIME (/ n aɪ m / ⓘ), the Konstanz Information Miner, [2] is a free and open-source data analytics, reporting and integration platform.KNIME integrates various components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept.
Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension.
(Reuters) - Toronto-based bitcoin miner Bitfarms has enlisted two consultants to explore how it can transform some of its facilities to meet the growing demand for artificial intelligence data ...
As of release 11gR1 Oracle Data Mining contains the following data mining functions: Data transformation and model analysis: Data sampling, binning, discretization, and other data transformations. Model exploration, evaluation and analysis. Feature selection (Attribute Importance). Minimum description length (MDL). Classification. Naive Bayes (NB).