Search results
Results from the WOW.Com Content Network
It is not always the case that the structure of a molecule is easy to relate to its function. What makes the structure of DNA so obviously related to its function was described modestly at the end of the article: "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material".
Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary.
At neutral pH, nucleic acids are highly charged as each phosphate group carries a negative charge. [7] Both DNA and RNA are built from nucleoside phosphates, also known as mononucleotide monomers, which are thermodynamically less likely to combine than amino acids. Phosphodiester bonds, when hydrolyzed, release a considerable amount of free energy.
Crick proposed that each amino acid is first attached to its own specific “adaptor” piece of nucleic acid (in an enzyme-catalysed reaction). The order of assembly of the amino acids is then determined by a specific recognition between the adaptor and the nucleic acid which is serving as the informational template.
Phoebus Aaron Theodore Levene (25 February 1869 – 6 September 1940) was a Russian-born American biochemist who studied the structure and function of nucleic acids. He characterized the different forms of nucleic acid, DNA from RNA, and found that DNA contained adenine, guanine, thymine, cytosine, deoxyribose, and a phosphate group. [1]
TFOs are short (≈15-25 nt) nucleic acid strands that bind in the major groove of double-stranded DNA to form intramolecular triplex DNA structures. There is some evidence that they are also able to modulate gene activity in vivo. In peptide nucleic acid (PNA), the sugar-phosphate backbone of DNA is replaced with a protein-like backbone. PNAs ...
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
Nucleic acids RNA (left) and DNA (right). Nucleic acids are large biomolecules that are crucial in all cells and viruses. [1] They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid ...