enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...

  3. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    This is why the hypothesis under test is often called the null hypothesis (most likely, coined by Fisher (1935, p. 19)), because it is this hypothesis that is to be either nullified or not nullified by the test. When the null hypothesis is nullified, it is possible to conclude that data support the "alternative hypothesis" (which is the ...

  4. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    Whether statistical testing is properly one subject or two remains a source of disagreement. [27] Sample of two: One text refers to the subject as hypothesis testing (with no mention of significance testing in the index) while another says significance testing (with a section on inference as a decision).

  5. Statistical conclusion validity - Wikipedia

    en.wikipedia.org/wiki/Statistical_conclusion...

    Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or "reasonable". This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to "reasonable" conclusions that use: quantitative, statistical, and ...

  6. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    In 1925, Ronald Fisher advanced the idea of statistical hypothesis testing, which he called "tests of significance", in his publication Statistical Methods for Research Workers. [28] [29] [30] Fisher suggested a probability of one in twenty (0.05) as a convenient cutoff level to reject the null hypothesis. [31]

  7. Two-sample hypothesis testing - Wikipedia

    en.wikipedia.org/wiki/Two-sample_hypothesis_testing

    In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .

  8. Foundations of statistics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_statistics

    Statistics subsequently branched out into various directions, including decision theory, Bayesian statistics, exploratory data analysis, robust statistics, and non-parametric statistics. Neyman-Pearson hypothesis testing made significant contributions to decision theory, which is widely employed, particularly in statistical quality control.

  9. Hypothesis - Wikipedia

    en.wikipedia.org/wiki/Hypothesis

    In statistical hypothesis testing, two hypotheses are compared. These are called the null hypothesis and the alternative hypothesis. The null hypothesis is the hypothesis that states that there is no relation between the phenomena whose relation is under investigation, or at least not of the form given by the alternative hypothesis.