Search results
Results from the WOW.Com Content Network
Hydrogen peroxide is a chemical compound with the formula H 2 O 2.In its pure form, it is a very pale blue [5] liquid that is slightly more viscous than water.It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
The general structure of an organic peroxide. In organic chemistry, organic peroxides are organic compounds containing the peroxide functional group (R−O−O−R′).If the R′ is hydrogen, the compounds are called hydroperoxides, which are discussed in that article.
Thus, these compounds form a homologous series with chemical formula H 2 O n in which the members differ by a constant relative molecular mass of 16 (the mass of each additional oxygen atom). The number of oxygen atoms is used to define the size of the hydrogen polyoxide (e.g., hydrogen pentoxide contains a five-oxygen backbone).
Hydrogen peroxide is not nearly as reactive as these species, but is readily activated and is thus included. [3] Peroxynitrite and nitric oxide are reactive oxygen-containing species as well. Hydroxyl radical (HO·) is generated by Fenton reaction of hydrogen peroxide with ferrous compounds and related reducing agents:
The characteristic structure of any regular peroxide is the oxygen-oxygen covalent single bond, which connects the two main atoms together. In the event that the molecule has no chemical substituents, the peroxide group will have a [-2] net charge.
In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula O − 2. [1] The systematic name of the anion is dioxide(1−).The reactive oxygen ion superoxide is particularly important as the product of the one-electron reduction of dioxygen O 2, which occurs widely in nature. [2]
Many industrial peroxides are produced using hydrogen peroxide. Reactions with aldehydes and ketones yield a series of compounds depending on conditions. Specific reactions include addition of hydrogen peroxide across the C=O double bond: R 2 C=O + H 2 O 2 → R 2 C(OH)OOH. In some cases, these hydroperoxides convert to give cyclic diperoxides:
The molecule has a bent structure. [3] The superoxide anion, • O − 2, and the hydroperoxyl radical exist in equilibrium in aqueous solution: • O − 2 + H 2 O ⇌ HO • 2 + HO −. The pK a of HO 2 is 4.88. Therefore, about 0.3% of any superoxide present in the cytosol of a typical cell is in the protonated form. [4] It oxidizes nitric ...