enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    The energy used by human cells in an adult requires the hydrolysis of 100 to 150 mol/L of ATP daily, which means a human will typically use their body weight worth of ATP over the course of the day. [30] Each equivalent of ATP is recycled 1000–1500 times during a single day (150 / 0.1 = 1500), [29] at approximately 9×10 20 molecules/s. [29]

  3. Maintenance respiration - Wikipedia

    en.wikipedia.org/wiki/Maintenance_respiration

    Maintenance respiration in plants refers to the amount of cellular respiration, measured by the carbon dioxide (CO 2) released or oxygen (O 2) consumed, during the generation of usable energy (mainly ATP, NADPH, and NADH) and metabolic intermediates used for (i) resynthesis of compounds that undergo renewal (turnover) in the normal process of metabolism (examples are enzymatic proteins ...

  4. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    This potential is then used to drive ATP synthase and produce ATP from ADP and a phosphate group. Biology textbooks often state that 38 ATP molecules can be made per oxidized glucose molecule during cellular respiration (2 from glycolysis, 2 from the Krebs cycle, and about 34 from the electron transport system). [5]

  5. Bioenergetics - Wikipedia

    en.wikipedia.org/wiki/Bioenergetics

    Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. [1] This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to ...

  6. Active transport - Wikipedia

    en.wikipedia.org/wiki/Active_transport

    There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...

  7. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    Like other enzymes, the activity of F 1 F O ATP synthase is reversible. Large-enough quantities of ATP cause it to create a transmembrane proton gradient , this is used by fermenting bacteria that do not have an electron transport chain, but rather hydrolyze ATP to make a proton gradient, which they use to drive flagella and the transport of ...

  8. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    Activities of the electron transport chain, especially from cytochrome b 6 f, lead to pumping of protons from the stroma to the lumen. The resulting transmembrane proton gradient is used to make ATP via ATP synthase. The overall process of the photosynthetic electron transport chain in chloroplasts is:

  9. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    ATP synthase is powered by a transmembrane electrochemical potential gradient, usually in the form of a proton gradient. In all living organisms, a series of redox reactions is used to produce a transmembrane electrochemical potential gradient, or a so-called proton motive force (pmf).