Search results
Results from the WOW.Com Content Network
A feed back control system, such as a PID controller, can be improved by combining the feedback (or closed-loop control) of a PID controller with feed-forward (or open-loop) control. Knowledge about the system (such as the desired acceleration and inertia) can be fed forward and combined with the PID output to improve the overall system ...
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
Control systems that include some sensing of the results they are trying to achieve are making use of feedback and can adapt to varying circumstances to some extent. Open-loop control systems do not make use of feedback, and run only in pre-arranged ways. Closed-loop controllers have the following advantages over open-loop controllers:
A closed loop controller therefore has a feedback loop which ensures the controller exerts a control action to give a process output the same as the "reference input" or "set point". For this reason, closed loop controllers are also called feedback controllers. [3] The definition of a closed loop control system according to the British ...
In some systems, closed-loop and open-loop control are used simultaneously. In such systems, the open-loop control is termed feedforward and serves to further improve reference tracking performance. A common closed-loop controller architecture is the PID controller.
In systems theory, an open system is a feed forward system that does not have any feedback loop to control its output. In contrast, a closed system uses on a feedback loop to control the operation of the system. In an open system, the output of the system is not fed back into the input to the system for control or operation. [citation needed]
Although feedback is an important aspect of control engineering, control engineers may also work on the control of systems without feedback. This is known as open loop control. A classic example of open loop control is a washing machine that runs through a pre-determined cycle without the use of sensors.
A control loop using a discrete controller. Field signals are flow rate measurement from the sensor, and control output to the valve. A valve positioner ensures correct valve operation. The simplest control systems are based around small discrete controllers with a single control loop each. These are usually panel mounted which allows direct ...