Search results
Results from the WOW.Com Content Network
Ipso-substitution describes two substituents sharing the same ring position in an intermediate compound in an electrophilic aromatic substitution. Trimethylsilyl, tert-butyl, and isopropyl groups can form stable carbocations, hence are ipso directing groups. Meso-substitution refers to the substituents occupying a benzylic position.
Benzene is sufficiently nucleophilic that it undergoes substitution by acylium ions and alkyl carbocations to give substituted derivatives. Electrophilic aromatic substitution of benzene. The most widely practiced example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999. [73]
A disubstituted phenyl compound (trisubstituted benzene) may be, for example, 1,3,5-trisubstituted or 1,2,3-trisubstituted. Higher degrees of substitution, of which the pentafluorophenyl group is an example, exist and are named according to IUPAC nomenclature.
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
This category includes chemical compounds that are derivatives or structural analogs of benzene in which the benzene has multiple substituents or bonds. For benzene derivatives that include a phenyl group , C 6 H 5 – (benzene with only one substituent or bond), see the child category, Category:Phenyl compounds .
Benzyl group and derivatives: Benzyl group, benzyl radical, benzyl amine, benzyl bromide, benzyl chloroformate, and benzyl methyl ether. R = heteroatom, alkyl, aryl, allyl etc. or other substituents. In organic chemistry, benzyl is the substituent or molecular fragment possessing the structure R−CH 2 −C 6 H 5.
Reactivity of 4-substituted bicyclo[2.2.2]octane-1-carboxylic acids and esters were measured in 3 different processes, each of which had been previously used with the benzoic acid derivatives. A plot of log(k) against log(K A ) showed a linear relationship.
There are three main ortho effects in substituted benzene compounds: Steric hindrance forces cause substitution of a chemical group in the ortho position of benzoic acids become stronger acids. Steric inhibition of protonation caused by substitution of anilines to become weaker bases, compared to substitution of isomers in the meta and para ...