Search results
Results from the WOW.Com Content Network
This category includes chemical compounds that are derivatives or structural analogs of benzene in which the benzene has multiple substituents or bonds. For benzene derivatives that include a phenyl group , C 6 H 5 – (benzene with only one substituent or bond), see the child category, Category:Phenyl compounds .
Benzene is sufficiently nucleophilic that it undergoes substitution by acylium ions and alkyl carbocations to give substituted derivatives. Electrophilic aromatic substitution of benzene. The most widely practiced example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999. [73]
There are three main ortho effects in substituted benzene compounds: Steric hindrance forces cause substitution of a chemical group in the ortho position of benzoic acids become stronger acids. Steric inhibition of protonation caused by substitution of anilines to become weaker bases, compared to substitution of isomers in the meta and para ...
The equation also holds for reaction rates k of a series of reactions with substituted benzene derivatives: log k k 0 = σ ρ {\displaystyle \log {\frac {k}{k_{0}}}=\sigma \rho } In this equation k 0 {\displaystyle {k}_{0}} is the reference reaction rate of the unsubstituted reactant, and k that of a substituted reactant.
An alkylbenzene is a chemical compound that contains a monocyclic aromatic ring attaching to one or more saturated hydrocarbon chains. [1] Alkylbenzenes are derivatives of benzene, in which one or more hydrogen atoms are replaced by alkyl groups.
Benzyl group and derivatives: Benzyl group, benzyl radical, benzyl amine, benzyl bromide, benzyl chloroformate, and benzyl methyl ether. R = heteroatom, alkyl, aryl, allyl etc. or other substituents. In organic chemistry, benzyl is the substituent or molecular fragment possessing the structure R−CH 2 −C 6 H 5.
The study of organic heterocyclic chemistry focuses especially on organic unsaturated derivatives, and the preponderance of work and applications involves unstrained organic 5- and 6-membered rings. Included are pyridine, thiophene, pyrrole, and furan. Another large class of organic heterocycles refers to those fused to benzene rings.
In meta-substitution, the substituents occupy positions 1 and 3 (corresponding to R and meta in the diagram). In para-substitution, the substituents occupy the opposite ends (positions 1 and 4, corresponding to R and para in the diagram). The toluidines serve as an example for these three types of substitution.