Search results
Results from the WOW.Com Content Network
Line representations in robotics are used for the following: They model joint axes: a revolute joint makes any connected rigid body rotate about the line of its axis; a prismatic joint makes the connected rigid body translate along its axis line. They model edges of the polyhedral objects used in many task planners or sensor processing modules.
Often links are presented as geometric objects, such as lines, triangles or squares, that support schematic versions of the joints of the mechanism or machine. [1] For example, the figures show the kinematic diagrams (i) of the slider-crank that forms a piston and crank-shaft in an engine, and (ii) of the first three joints for a PUMA manipulator.
To determine the coordinate transformations [Z ] and [X ], the joints connecting the links are modeled as either hinged or sliding joints, each of which has a unique line S in space that forms the joint axis and define the relative movement of the two links. A typical serial robot is characterized by a sequence of six lines S i (i = 1, 2 ...
In robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. [1] [2] The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation.
These leg mechanisms have applications in mobile robotics and in gait analysis. [3] [4] The central 'crank' link moves in circles as it is actuated by a rotary actuator such as an electric motor. All other links and pin joints are unactuated and move because of the motion imparted by the
The JPL mobile robot ATHLETE is a platform with six serial chain legs ending in wheels. The arms, fingers, and head of the JSC Robonaut are modeled as kinematic chains. The movement of the Boulton & Watt steam engine is studied as a system of rigid bodies connected by joints forming a kinematic chain.
A model of a robotic arm with joints. In robotics the common normal of two non-intersecting joint axes is a line perpendicular to both axes. [1]The common normal can be used to characterize robot arm links, by using the "common normal distance" and the angle between the link axes in a plane perpendicular to the common normal. [2]
The kinematics equations for the series chain of a robot are obtained using a rigid transformation [Z] to characterize the relative movement allowed at each joint and separate rigid transformation [X] to define the dimensions of each link. The result is a sequence of rigid transformations alternating joint and link transformations from the base ...