enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .

  3. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary digits: 3A 16 = 0011 1010 2 E7 16 = 1110 0111 2. To convert a binary number into its hexadecimal equivalent, divide it into groups of four bits. If the number of bits isn't a multiple of four, simply insert extra 0 bits at the left (called ...

  4. List of binary codes - Wikipedia

    en.wikipedia.org/wiki/List_of_binary_codes

    This is a list of some binary codes that are (or have been) used to represent text as a sequence of binary digits "0" and "1". Fixed-width binary codes use a set number of bits to represent each character in the text, while in variable-width binary codes, the number of bits may vary from character to character.

  5. Binary code - Wikipedia

    en.wikipedia.org/wiki/Binary_code

    Binary-coded decimal (BCD) is a binary encoded representation of integer values that uses a 4-bit nibble to encode decimal digits. Four binary bits can encode up to 16 distinct values; but, in BCD-encoded numbers, only ten values in each nibble are legal, and encode the decimal digits zero, through nine.

  6. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number. In BCD as in decimal, there cannot exist a value greater than 9 (1001) per digit. To correct this, 6 (0110) is added to the total, and then the result is treated as two nibbles:

  7. Binary integer decimal - Wikipedia

    en.wikipedia.org/wiki/Binary_Integer_Decimal

    In the decimal encoding, it is encoded as a series of p decimal digits (using the densely packed decimal (DPD) encoding). This makes conversion to decimal form efficient, but requires a specialized decimal ALU to process. In the binary integer decimal (BID) encoding, it is encoded as a binary number.

  8. Bitwise operation - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operation

    0110 (decimal 6) AND 1011 (decimal 11) = 0010 (decimal 2) Because of this property, it becomes easy to check the parity of a binary number by checking the value of the lowest valued bit. Using the example above: 0110 (decimal 6) AND 0001 (decimal 1) = 0000 (decimal 0) Because 6 AND 1 is zero, 6 is divisible by two and therefore even.

  9. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32". An example and comparison of numbers in different bases is described in the chart below.