Search results
Results from the WOW.Com Content Network
The question about how many vertices/watchmen/guards were needed, was posed to Chvátal by Victor Klee in 1973. [1] Chvátal proved it shortly thereafter. [2] Chvátal's proof was later simplified by Steve Fisk, via a 3-coloring argument. [3] Chvátal has a more geometrical approach, whereas Fisk uses well-known results from Graph theory.
The result, x 2, is a "better" approximation to the system's solution than x 1 and x 0. If exact arithmetic were to be used in this example instead of limited-precision, then the exact solution would theoretically have been reached after n = 2 iterations ( n being the order of the system).
In 2003, an irregular repeat accumulate (IRA) style LDPC code beat six turbo codes to become the error-correcting code in the new DVB-S2 standard for digital television. [13] The DVB-S2 selection committee made decoder complexity estimates for the turbo code proposals using a much less efficient serial decoder architecture rather than a ...
Using low-degree polynomials over a finite field of size , it is possible to extend the definition of Reed–Muller codes to alphabets of size .Let and be positive integers, where should be thought of as larger than .
A plot of the smoothstep(x) and smootherstep(x) functions, using 0 as the left edge and 1 as the right edgeSmoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning.
Nelder–Mead in n dimensions maintains a set of n + 1 test points arranged as a simplex. It then extrapolates the behavior of the objective function measured at each test point in order to find a new test point and to replace one of the old test points with the new one, and so the technique progresses.
An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers.In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear.
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.