enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    From the first proof, one can see that the sum of the diagonals is equal to the perimeter of the parallelogram formed. Also, we can use vectors 1/2 the length of each side to first determine the area of the quadrilateral, and then to find areas of the four triangles divided by each side of the inner parallelogram.

  3. Midpoint polygon - Wikipedia

    en.wikipedia.org/wiki/Midpoint_polygon

    The midpoint polygon of a quadrilateral is a parallelogram called its Varignon parallelogram. If the quadrilateral is simple, the area of the parallelogram is one half the area of the original quadrilateral. The perimeter of the parallelogram equals the sum of the diagonals of the original quadrilateral.

  4. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    Rhombus – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a rhomboid but this term is not used in modern mathematics. [1] Square – A parallelogram with four sides of equal length and angles of equal size (right angles).

  5. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    If the quadrilateral is a parallelogram, then the midpoints of the diagonals coincide so that the connecting line segment has length 0. In addition the parallel sides are of equal length, hence Euler's theorem reduces to + = + which is the parallelogram law.

  6. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    For a polygon with 2n sides, the parallelogram will have a base of length ns, and a height h. As the number of sides increases, the length of the parallelogram base approaches half the circle circumference, and its height approaches the circle radius. In the limit, the parallelogram becomes a rectangle with width π r and height r.

  7. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  8. Theorem of the gnomon - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_the_gnomon

    The theorem of the gnomon can be used to construct a new parallelogram or rectangle of equal area to a given parallelogram or rectangle by the means of straightedge and compass constructions. This also allows the representation of a division of two numbers in geometrical terms, an important feature to reformulate geometrical problems in ...

  9. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    Comparison of sizes of regular polygons with the same edge length, from three to sixty sides. The size increases without bound as the number of sides approaches infinity. Of all n-gons with a given perimeter, the one with the largest area is regular. [10]