Search results
Results from the WOW.Com Content Network
If a vector of predictions is generated from a sample of data points on all variables, and is the vector of observed values of the variable being predicted, with ^ being the predicted values (e.g. as from a least-squares fit), then the within-sample MSE of the predictor is computed as
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.
Analysis of variance (ANOVA) is a family of statistical methods used to compare the means of two or more groups by analyzing variance. Specifically, ANOVA compares the amount of variation between the group means to the amount of variation within each group. If the between-group variation is substantially larger than the within-group variation ...
The ANOVA F-test can be used to assess whether any of the treatments are on average superior, or inferior, to the others versus the null hypothesis that all four treatments yield the same mean response. This is an example of an "omnibus" test, meaning that a single test is performed to detect any of several possible differences.
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
The ANOVA tests the null hypothesis, which states that samples in all groups are drawn from populations with the same mean values. To do this, two estimates are made of the population variance. To do this, two estimates are made of the population variance.
When the model has been estimated over all available data with none held back, the MSPE of the model over the entire population of mostly unobserved data can be estimated as follows.