Search results
Results from the WOW.Com Content Network
Synapomorphy/homology – a derived trait that is found in some or all terminal groups of a clade, and inherited from a common ancestor, for which it was an autapomorphy (i.e., not present in its immediate ancestor). Underlying synapomorphy – a synapomorphy that has been lost again in many members of the clade. If lost in all but one, it can ...
Secondary homology is implied by parsimony analysis, where a character state that arises only once on a tree is taken to be homologous. [20] [21] As implied in this definition, many cladists consider secondary homology to be synonymous with synapomorphy, a shared derived character or trait state that distinguishes a clade from other organisms.
Plesiomorphy, symplesiomorphy, apomorphy, and synapomorphy all mean a trait shared between species because they share an ancestral species. [a] Apomorphic and synapomorphic characteristics convey much information about evolutionary clades and can be used to define taxa. However, plesiomorphic and symplesiomorphic characteristics cannot.
Synapomorphy/Homology – a derived trait that is found in some or all terminal groups of a clade, and inherited from a common ancestor, for which it was an autapomorphy (i.e., not present in its immediate ancestor). Underlying synapomorphy – a synapomorphy that has been lost again in many members of the clade. If lost in all but one, it can ...
Homology is the term used to characterize the similarity of features that can be parsimoniously explained by common ancestry. Homoplasy is the term used to describe a feature that has been gained or lost independently in separate lineages over the course of evolution.
Cellular homology can also be used to calculate the homology of the genus g surface. The fundamental polygon of Σ g {\displaystyle \Sigma _{g}} is a 4 n {\displaystyle 4n} -gon which gives Σ g {\displaystyle \Sigma _{g}} a CW-structure with one 2-cell, 2 n {\displaystyle 2n} 1-cells, and one 0-cell.
This is different from homology, which is the term used to characterize the similarity of features that can be parsimoniously explained by common ancestry. [1] Homoplasy can arise from both similar selection pressures acting on adapting species, and the effects of genetic drift .
Many scientists eschew distance methods, for various reasons. A commonly cited reason is that distances are inherently phenetic rather than phylogenetic, in that they do not distinguish between ancestral similarity (symplesiomorphy) and derived similarity (synapomorphy). This criticism is not entirely fair: most currently implementations of ...