Search results
Results from the WOW.Com Content Network
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
For one-dimensional arrays, this facility may be provided as an operation append(A,x) that increases the size of the array A by one and then sets the value of the last element to x. Other array types (such as Pascal strings) provide a concatenation operator, which can be used together with slicing to achieve that effect and more. In some ...
In Lua, "table" is a fundamental type that can be used either as an array (numerical index, fast) or as an associative array. The keys and values can be of any type, except nil. The following focuses on non-numerical indexes. A table literal is written as { value, key = value, [index] = value, ["non id string"] = value }. For example:
The np.pad(...) routine to extend arrays actually creates new arrays of the desired shape and padding values, copies the given array into the new one and returns it. NumPy's np.concatenate([a1,a2]) operation does not actually link the two arrays but returns a new one, filled with the entries from both given arrays in sequence.
Common examples of array slicing are extracting a substring from a string of characters, the "ell" in "hello", extracting a row or column from a two-dimensional array, or extracting a vector from a matrix. Depending on the programming language, an array slice can be made out of non-consecutive
The ordered sequential types are lists (dynamic arrays), tuples, and strings. All sequences are indexed positionally (0 through length - 1) and all but strings can contain any type of object, including multiple types in the same sequence. Both strings and tuples are immutable, making them perfect candidates for dictionary keys (see below).
The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator. If a is a row vector of size [1 n] and b is a corresponding column vector of size [n 1]. a * b;
This can be accomplished as a special case of #Find, with a string of one character; but it may be simpler or more efficient in many languages to locate just one character. Also, in many languages, characters and strings are different types, so it is convenient to have such a function.