enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ionic radius - Wikipedia

    en.wikipedia.org/wiki/Ionic_radius

    An "anomalous" ionic radius in a crystal is often a sign of significant covalent character in the bonding. No bond is completely ionic, and some supposedly "ionic" compounds, especially of the transition metals, are particularly covalent in character. This is illustrated by the unit cell parameters for sodium and silver halides in the table.

  3. Atomic radii of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Atomic_radii_of_the...

    For more recent data on covalent radii see Covalent radius. Just as atomic units are given in terms of the atomic mass unit (approximately the proton mass), the physically appropriate unit of length here is the Bohr radius, which is the radius of a hydrogen atom. The Bohr radius is consequently known as the "atomic unit of length".

  4. Fajans' rules - Wikipedia

    en.wikipedia.org/wiki/Fajans'_rules

    In inorganic chemistry, Fajans' rules, formulated by Kazimierz Fajans in 1923, [1] [2] [3] are used to predict whether a chemical bond will be covalent or ionic, and depend on the charge on the cation and the relative sizes of the cation and anion. They can be summarized in the following table:

  5. Pauling's rules - Wikipedia

    en.wikipedia.org/wiki/Pauling's_rules

    For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron.The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio + / (or /) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.

  6. Cation-anion radius ratio - Wikipedia

    en.wikipedia.org/wiki/Cation-anion_radius_ratio

    In condensed matter physics and inorganic chemistry, the cation-anion radius ratio can be used to predict the crystal structure of an ionic compound based on the relative size of its atoms. It is defined as the ratio of the ionic radius of the positively charged cation to the ionic radius of the negatively charged anion in a cation-anion compound.

  7. Atomic radius - Wikipedia

    en.wikipedia.org/wiki/Atomic_radius

    The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius.

  8. Metal ions in aqueous solution - Wikipedia

    en.wikipedia.org/wiki/Metal_ions_in_aqueous_solution

    The strength of the M-O bond tends to increase with the charge and decrease as the size of the metal ion increases. In fact there is a very good linear correlation between hydration enthalpy and the ratio of charge squared to ionic radius, z 2 /r. [4] For ions in solution Shannon's "effective ionic radius" is the measure most often used. [5]

  9. Compatibility (geochemistry) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(geochemistry)

    Compatibility of an ion is controlled by two things: its valence and its ionic radius. [1] Both must approximate those of the major element for the trace element to be compatible in the mineral. For instance, olivine (an abundant mineral in the upper mantle) has the chemical formula (Mg,Fe) 2 SiO 4.