Search results
Results from the WOW.Com Content Network
The Game of Life, also known as Conway's Game of Life or simply Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. [1] It is a zero-player game , [ 2 ] [ 3 ] meaning that its evolution is determined by its initial state, requiring no further input.
Langton's loops are a particular "species" of artificial life in a cellular automaton created in 1984 by Christopher Langton. They consist of a loop of cells containing genetic information, which flows continuously around the loop and out along an "arm" (or pseudopod), which will become the daughter loop. The "genes" instruct it to make three ...
LifeWiki's homepage. LifeWiki is a wiki dedicated to Conway's Game of Life. [1] [2] It hosts over 2000 articles on the subject [3] and a large collection of Life patterns stored in a format based on run-length encoding [4] that it uses to interoperate with other Life software such as Golly.
For example, in Conway's Game of Life, the ability of the glider (Life's simplest spaceship) to transmit information is part of a proof that Life is Turing-complete. In March 2016, the unexpected discovery of a small but high-period spaceship enthused the Game of Life community. It was named "copperhead". [1]
Bill Gosper discovered the first glider gun in 1970, earning $50 from Conway. The discovery of the glider gun eventually led to the proof that Conway's Game of Life could function as a Turing machine. [3] For many years this glider gun was the smallest one known in Life, [4] although other rules had smaller guns.
In Conway's Game of Life, oscillators had been identified and named as early as 1971. [1] Since then it has been shown that finite oscillators exist for all periods. [2] [3] [4] Additionally, until July 2022, the only known examples for period 34 were considered trivial because they consisted of essentially separate components that oscillate at smaller periods.
The glider is a pattern that travels across the board in Conway's Game of Life. It was first discovered by Richard K. Guy in 1969, while John Conway's group was attempting to track the evolution of the R-pentomino. Gliders are the smallest spaceships, and they travel diagonally at a speed of one cell every four generations, or /
In Conway's Game of Life and other cellular automata, a still life is a pattern that does not change from one generation to the next. The term comes from the art world where a still life painting or photograph depicts an inanimate scene. In cellular automata, a still life can be thought of as an oscillator with unit period. [1]