Search results
Results from the WOW.Com Content Network
Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversible upon removing the stress.
Ductility is a material property that can be expressed in a variety of ways. Mathematically, it is commonly expressed as a total quantity of elongation or a total quantity of the change in cross sectional area of a specific rock until macroscopic brittle behavior, such as fracturing, is observed.
Some physical properties are qualitative, such as shininess, brittleness, etc.; some general qualitative properties admit more specific related quantitative properties, such as in opacity, hardness, ductility, viscosity, etc. Physical properties are often characterized as intensive and extensive properties. An intensive property does not depend ...
The atomic packing factor of a unit cell is relevant to the study of materials science, where it explains many properties of materials. For example, metals with a high atomic packing factor will have a higher "workability" (malleability or ductility ), similar to how a road is smoother when the stones are closer together, allowing metal atoms ...
In science class I was taught that ductility is the ability of a material to be stretched into wires, whereas malleability is the ability of a material to be shaped. The currently given definition of "a mechanical property used to describe the extent to which materials can be deformed plastically without fracture."
In materials science, material failure is the loss of load carrying capacity of a material unit. This definition introduces to the fact that material failure can be examined in different scales, from microscopic, to macroscopic. In structural problems, where the structural response may be beyond the initiation of nonlinear material behaviour ...
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
ε f ' is an empirical constant known as the fatigue ductility coefficient defined by the strain intercept at 2N =1; c is an empirical constant known as the fatigue ductility exponent, commonly ranging from -0.5 to -0.7. Small c results in long fatigue life. ς f ' is a constant known as the fatigue strength coefficient