Search results
Results from the WOW.Com Content Network
[1] [2] [3] The hydrogen bonding pattern in an alpha sheet is similar to that of a beta sheet, but the orientation of the carbonyl and amino groups in the peptide bond units is distinctive; in a single strand, all the carbonyl groups are oriented in the same direction on one side of the pleat, and all the amino groups are oriented in the same ...
The alpha helix is also commonly called a: Pauling–Corey–Branson α-helix (from the names of three scientists who described its structure); 3.6 13-helix because there are 3.6 amino acids in one ring, with 13 atoms being involved in the ring formed by the hydrogen bond (starting with amidic hydrogen and ending with carbonyl oxygen)
Peptide bond formation via dehydration reaction. When two amino acids form a dipeptide through a peptide bond, [1] it is a type of condensation reaction. [2] In this kind of condensation, two amino acids approach each other, with the non-side chain (C1) carboxylic acid moiety of one coming near the non-side chain (N2) amino moiety of the other.
Secondary structure is defined by hydrogen bonding, so the exact definition of a hydrogen bond is critical. The standard hydrogen-bond definition for secondary structure is that of DSSP, which is a purely electrostatic model. It assigns charges of ±q 1 ≈ 0.42e to the carbonyl carbon and oxygen, respectively, and charges of ±q 2 ≈ 0.20e to ...
An example of a 4-stranded antiparallel β-sheet fragment from a crystal structure of the enzyme catalase (PDB file 1GWE at 0.88 Å resolution). a) Front view, showing the antiparallel hydrogen bonds (dotted) between peptide NH and CO groups on adjacent strands.
Arginine residues interact with the nucleic acid phosphate backbone and commonly form hydrogen bonds with the base residues, particularly guanine, in protein–DNA complexes. Lysine residues can be singly, doubly and even triply methylated. Methylation does not alter the positive charge on the side chain, however. acetylation
In nonpolar solvents contact ion pairs with very high association constants are formed; [3] [4] in the gas phase the association energies of e.g. alkali halides reach up to 200 kJ/mol. [5] The Bjerrum or the Fuoss equation describe ion pair association as function of the ion charges zA and zB and the dielectric constant ε of the medium; a ...
Side view of a 3 10-helix of alanine residues in atomic detail. Two hydrogen bonds to the same peptide group are highlighted in magenta; the oxygen-hydrogen distance is 1.83 Å (183 pm). The protein chain runs upwards, i.e., its N-terminus is at the bottom and its C-terminus at the top of the figure.