Search results
Results from the WOW.Com Content Network
Quantiles can also be applied to continuous distributions, providing a way to generalize rank statistics to continuous variables (see percentile rank). When the cumulative distribution function of a random variable is known, the q -quantiles are the application of the quantile function (the inverse function of the cumulative distribution ...
Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.
Quantile functions are used in both statistical applications and Monte Carlo methods. The quantile function is one way of prescribing a probability distribution, and it is an alternative to the probability density function (pdf) or probability mass function, the cumulative distribution function (cdf) and the characteristic function.
In statistics, quartiles are a type of quantiles which divide the number of data points into four parts, or quarters, of more-or-less equal size. The data must be ordered from smallest to largest to compute quartiles; as such, quartiles are a form of order statistic. The three quartiles, resulting in four data divisions, are as follows:
Percentile ranks are not on an equal-interval scale; that is, the difference between any two scores is not the same as between any other two scores whose difference in percentile ranks is the same. For example, 50 − 25 = 25 is not the same distance as 60 − 35 = 25 because of the bell-curve shape of the distribution.
In statistics, quantile normalization is a technique for making two distributions identical in statistical properties. To quantile-normalize a test distribution to a reference distribution of the same length, sort the test distribution and sort the reference distribution.
Together with rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and inference. Important special cases of the order statistics are the minimum and maximum value of a sample, and (with some qualifications discussed below) the sample median and other sample quantiles.
A rankit plot is a kind of Q–Q plot – it plots the order statistics (quantiles) of the sample against certain quantiles (the rankits) of the assumed normal distribution. Q–Q plots may use other quantiles for the normal distribution, however.