Search results
Results from the WOW.Com Content Network
Line representations in robotics are used for the following: They model joint axes: a revolute joint makes any connected rigid body rotate about the line of its axis; a prismatic joint makes the connected rigid body translate along its axis line. They model edges of the polyhedral objects used in many task planners or sensor processing modules.
When controlled motors actuate the linkage, the whole system (a mechanism and its actuators) becomes a robot. [4] This is usually done by placing two servomotors (to control the two degrees of freedom) at the joints A and B, controlling the angle of the links L2 and L5. L1 is the grounded link.
A model of a robotic arm with joints. In robotics the common normal of two non-intersecting joint axes is a line perpendicular to both axes. [1]The common normal can be used to characterize robot arm links, by using the "common normal distance" and the angle between the link axes in a plane perpendicular to the common normal. [2]
In robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. [1] [2] The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation.
To determine the coordinate transformations [Z ] and [X ], the joints connecting the links are modeled as either hinged or sliding joints, each of which has a unique line S in space that forms the joint axis and define the relative movement of the two links. A typical serial robot is characterized by a sequence of six lines S i (i = 1, 2 ...
Often links are presented as geometric objects, such as lines, triangles or squares, that support schematic versions of the joints of the mechanism or machine. [1] For example, the figures show the kinematic diagrams (i) of the slider-crank that forms a piston and crank-shaft in an engine, and (ii) of the first three joints for a PUMA manipulator.
These leg mechanisms have applications in mobile robotics and in gait analysis. [3] [4] The central 'crank' link moves in circles as it is actuated by a rotary actuator such as an electric motor. All other links and pin joints are unactuated and move because of the motion imparted by the
Victor Scheinman's MIT Arm, built for MIT's Artificial Intelligence Lab ca. 1972, the first arm designed with a 321 kinematic structure. 321 kinematic structure is a design method for robotic arms (serial manipulators), invented by Donald L. Pieper and used in most commercially produced robotic arms.