enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss sum - Wikipedia

    en.wikipedia.org/wiki/Gauss_sum

    In algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically ():= (,) = ()where the sum is over elements r of some finite commutative ring R, ψ is a group homomorphism of the additive group R + into the unit circle, and χ is a group homomorphism of the unit group R × into the unit circle, extended to non-unit r, where it takes the ...

  3. Quadratic Gauss sum - Wikipedia

    en.wikipedia.org/wiki/Quadratic_Gauss_sum

    In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum .

  4. Gaussian period - Wikipedia

    en.wikipedia.org/wiki/Gaussian_period

    As is discussed in more detail below, the Gaussian periods are closely related to another class of sums of roots of unity, now generally called Gauss sums (sometimes Gaussian sums). The quantity P − P * presented above is a quadratic Gauss sum mod p , the simplest non-trivial example of a Gauss sum.

  5. Hasse–Davenport relation - Wikipedia

    en.wikipedia.org/wiki/Hasse–Davenport_relation

    The Hasse–Davenport relations, introduced by Davenport and Hasse , are two related identities for Gauss sums, one called the Hasse–Davenport lifting relation, and the other called the Hasse–Davenport product relation. The Hasse–Davenport lifting relation is an equality in number theory relating Gauss sums over different fields.

  6. Proofs of quadratic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_quadratic...

    A fundamental property of these Gauss sums is that = where = (). To put this in context of the next proof, the individual elements of the Gauss sum are in the cyclotomic field L = Q ( ζ p ) {\displaystyle L=\mathbb {Q} (\zeta _{p})} but the above formula shows that the sum itself is a generator of the unique quadratic field contained in L .

  7. Gross–Koblitz formula - Wikipedia

    en.wikipedia.org/wiki/Gross–Koblitz_formula

    In mathematics, the Gross–Koblitz formula, introduced by Gross and Koblitz expresses a Gauss sum using a product of values of the p-adic gamma function. It is an analog of the Chowla–Selberg formula for the usual gamma function. It implies the Hasse–Davenport relation and generalizes the Stickelberger theorem.

  8. Disquisitiones Arithmeticae - Wikipedia

    en.wikipedia.org/wiki/Disquisitiones_Arithmeticae

    Disquisitiones Arithmeticae (Latin for Arithmetical Investigations) is a textbook on number theory written in Latin by Carl Friedrich Gauss in 1798, when Gauss was 21, and published in 1801, when he was 24. It had a revolutionary impact on number theory by making the field truly rigorous and systematic and paved the path for modern number theory.

  9. Chowla–Mordell theorem - Wikipedia

    en.wikipedia.org/wiki/Chowla–Mordell_theorem

    In mathematics, the Chowla–Mordell theorem is a result in number theory determining cases where a Gauss sum is the square root of a prime number, multiplied by a root of unity. It was proved and published independently by Sarvadaman Chowla and Louis Mordell , around 1951.