Search results
Results from the WOW.Com Content Network
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
This is the basis for defining the magnetic moment units of Bohr magneton (assuming charge-to-mass ratio of the electron) and nuclear magneton (assuming charge-to-mass ratio of the proton). See electron magnetic moment and Bohr magneton for more details.
The factor of two indicates that the electron appears to be twice as effective in producing a magnetic moment as a charged body for which the mass and charge distributions are identical. The spin magnetic dipole moment is approximately one μ B because g s ≈ 2 {\displaystyle g_{\text{s}}\approx 2} and the electron is a spin- 1 / 2 ...
Its SI unit is the radian per ... that as long as its charge and mass density and ... where μ B is the Bohr magneton. The gyromagnetic ratio due to electron spin is ...
where g s is the electron spin g-factor, μ B is the Bohr magneton, ħ is the reduced Planck constant, and S is the electron spin operator. The orbital magnetization M is defined as the orbital moment density; i.e., orbital moment per unit volume.
The best available measurement for the value of the magnetic moment of the neutron is μ n = −1.913 042 76 (45) μ N. [3] [4] Here, μ N is the nuclear magneton, a standard unit for the magnetic moments of nuclear components, and μ B is the Bohr magneton, both being physical constants.
The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla) on its surface.
The magnetic dipole moment of the electron, which is much larger as a consequence of much larger charge-to-mass ratio, is usually expressed in units of the Bohr magneton, which is calculated in the same fashion using the electron mass. The result is larger than μ N by a factor equal to the proton-to-electron mass ratio, about 1836.