Search results
Results from the WOW.Com Content Network
Converts Unicode character codes, always given in hexadecimal, to their UTF-8 or UTF-16 representation in upper-case hex or decimal. Can also reverse this for UTF-8. The UTF-16 form will accept and pass through unpaired surrogates e.g. {{#invoke:Unicode convert|getUTF8|D835}} → D835.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
International Components for Unicode (ICU) is an open-source project of mature C/C++ and Java libraries for Unicode support, software internationalization, and software globalization. ICU is widely portable to many operating systems and environments. It gives applications the same results on all platforms and between C, C++, and Java software.
A numeric character reference refers to a character by its Universal Character Set/Unicode code point, and a character entity reference refers to a character by a predefined name. A numeric character reference uses the format &#nnnn; or &#xhhhh; where nnnn is the code point in decimal form, and hhhh is the code point in hexadecimal form.
The \n escape sequence allows for shorter code by specifying the newline in the string literal, and for faster runtime by eliminating the text formatting operation. Also, the compiler can map the escape sequence to a character encoding system other than ASCII and thus make the code more portable.
The tables below list the number of bytes per code point for different Unicode ranges. Any additional comments needed are included in the table. The figures assume that overheads at the start and end of the block of text are negligible. N.B. The tables below list numbers of bytes per code point, not per user visible "character" (or "grapheme ...
In 1973, ECMA-35 and ISO 2022 [18] attempted to define a method so an 8-bit "extended ASCII" code could be converted to a corresponding 7-bit code, and vice versa. [19] In a 7-bit environment, the Shift Out would change the meaning of the 96 bytes 0x20 through 0x7F [a] [21] (i.e. all but the C0 control codes), to be the characters that an 8-bit environment would print if it used the same code ...
The unifont.hex file contains one line for each glyph. Each line consists of a four-digit Unicode hexadecimal code point, a colon, and the bitmap string. The bit string is 32 hexadecimal digits for an 8-pixel-wide glyph, or 64 hexadecimal digits for a 16-pixel-wide glyph.