enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    Most lenses are spherical lenses: their two surfaces are parts of the surfaces of spheres. Each surface can be convex (bulging outwards from the lens), concave (depressed into the lens), or planar (flat). The line joining the centres of the spheres making up the lens surfaces is called the axis of the lens. Typically the lens axis passes ...

  3. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    Focal length. The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a ...

  4. Curved mirror - Wikipedia

    en.wikipedia.org/wiki/Curved_mirror

    A curved mirror is a mirror with a curved reflecting surface. The surface may be either convex (bulging outward) or concave (recessed inward). Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices. The most common non-spherical type are parabolic reflectors, found in ...

  5. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    Geometrical optics. Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances. The simplifying assumptions of geometrical optics include that light rays:

  6. History of optics - Wikipedia

    en.wikipedia.org/wiki/History_of_optics

    History of optics. Modern ophthalmic lens making machine. Optics began with the development of lenses by the ancient Egyptians and Mesopotamians, followed by theories on light and vision developed by ancient Greek philosophers, and the development of geometrical optics in the Greco-Roman world. The word optics is derived from the Greek term ...

  7. Virtual image - Wikipedia

    en.wikipedia.org/wiki/Virtual_image

    A converging lens (one that is thicker in the middle than at the edges) or a concave mirror is also capable of producing a virtual image if the object is within the focal length. Such an image will be magnified. In contrast, an object placed in front of a converging lens or concave mirror at a position beyond the focal length produces a real image.

  8. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    In geometrical optics, vergence describes the curvature of optical wavefronts. [1] Vergence is defined as. where n is the medium's refractive index and r is the distance from the point source to the wavefront. Vergence is measured in units of dioptres (D) which are equivalent to m −1. [1] This describes the vergence in terms of optical power.

  9. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    R = radius of curvature, R > 0 for concave, valid in the paraxial approximation is the mirror angle of incidence in the horizontal plane. Thin lens f = focal length of lens where f > 0 for convex/positive (converging) lens.