enow.com Web Search

  1. Ad

    related to: how to show work for 2 digit problems in math practice
  2. Education.com is great and resourceful - MrsChettyLife

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Educational Songs

      Explore catchy, kid-friendly tunes

      to get your kids excited to learn.

Search results

  1. Results from the WOW.Com Content Network
  2. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    The Trachtenberg system is a system of rapid mental calculation. The system consists of a number of readily memorized operations that allow one to perform arithmetic computations very quickly. It was developed by the Russian engineer Jakow Trachtenberg in order to keep his mind occupied while being in a Nazi concentration camp .

  3. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    There are two steps to extracting the cube root from the cube of a two-digit number. For example, extracting the cube root of 29791. Determine the one's place (units) of the two-digit number. Since the cube ends in 1, as seen above, it must be 1. If the perfect cube ends in 0, the cube root of it must end in 0.

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Multiplication algorithm. A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the topic. The oldest and simplest method, known since antiquity as long ...

  5. Gray code - Wikipedia

    en.wikipedia.org/wiki/Gray_code

    ); the next digit a pattern of 4 on, 4 off; the i-th least significant bit a pattern of 2 i on 2 i off. The most significant digit is an exception to this: for an n-bit Gray code, the most significant digit follows the pattern 2 n-1 on, 2 n-1 off, which is the same (cyclic) sequence of values as for the second-most significant digit, but ...

  6. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [ 1][ 2][ 3] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most single-digit ...

  7. Lattice multiplication - Wikipedia

    en.wikipedia.org/wiki/Lattice_multiplication

    A grid is drawn up, and each cell is split diagonally. The two multiplicands of the product to be calculated are written along the top and right side of the lattice, respectively, with one digit per column across the top for the first multiplicand (the number written left to right), and one digit per row down the right side for the second multiplicand (the number written top-down).

  8. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is ...

  9. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Problem II.8 of the Arithmetica asks how a given square number is split into two other squares; in other words, for a given rational number k, find rational numbers u and v such that k 2 = u 2 + v 2. Diophantus shows how to solve this sum-of-squares problem for k = 4 (the solutions being u = 16/5 and v = 12/5 ).

  1. Ad

    related to: how to show work for 2 digit problems in math practice