enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Histogram of oriented gradients - Wikipedia

    en.wikipedia.org/.../Histogram_of_oriented_gradients

    The R-HOG blocks appear quite similar to the scale-invariant feature transform (SIFT) descriptors; however, despite their similar formation, R-HOG blocks are computed in dense grids at some single scale without orientation alignment, whereas SIFT descriptors are usually computed at sparse, scale-invariant key image points and are rotated to ...

  3. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    The scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. [1] Applications include object recognition , robotic mapping and navigation, image stitching , 3D modeling , gesture recognition , video tracking , individual identification of ...

  4. GLOH - Wikipedia

    en.wikipedia.org/wiki/GLOH

    GLOH (Gradient Location and Orientation Histogram) is a robust image descriptor that can be used in computer vision tasks. It is a SIFT-like descriptor that considers more spatial regions for the histograms. An intermediate vector is computed from 17 location and 16 orientation bins, for a total of 272-dimensions.

  5. Principal curvature-based region detector - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature-based...

    These detectors include SIFT, Hessian-affine, Harris-Affine and MSER etc. Structure-based detectors depend on structural image features such as lines, edges, curves, etc. to define interest points or regions. These detectors include edge-based region (EBR) and scale-invariant shape features (SISF)

  6. Structure from motion - Wikipedia

    en.wikipedia.org/wiki/Structure_from_motion

    To find correspondence between images, features such as corner points (edges with gradients in multiple directions) are tracked from one image to the next. One of the most widely used feature detectors is the scale-invariant feature transform (SIFT). It uses the maxima from a difference-of-Gaussians (DOG) pyramid as features. The first step in ...

  7. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model [1] [2] can be applied to image classification or retrieval, by treating image features as words. In document classification , a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary.

  8. Speeded up robust features - Wikipedia

    en.wikipedia.org/wiki/Speeded_up_robust_features

    In computer vision, speeded up robust features (SURF) is a local feature detector and descriptor, with patented applications. It can be used for tasks such as object recognition, image registration, classification, or 3D reconstruction. It is partly inspired by the scale-invariant feature transform (SIFT) descriptor. The standard version of ...

  9. Hough transform - Wikipedia

    en.wikipedia.org/wiki/Hough_transform

    The Hough transform (/ h ĘŚ f /) is a feature extraction technique used in image analysis, computer vision, pattern recognition, and digital image processing. [1] [2] The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure.