enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The Maclaurin series of the logarithm function ⁡ (+) is conditionally convergent for x = 1. The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.

  3. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    However Carleson's theorem shows that for a given continuous function the Fourier series converges almost everywhere. It is also possible to give explicit examples of a continuous function whose Fourier series diverges at 0: for instance, the even and 2π-periodic function f defined for all x in [0,π] by [9]

  4. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    When it is positive, the power series converges absolutely and uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges. In case of multiple singularities of a function (singularities are those values of the argument for which the ...

  5. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    Many other power series can be written as transformations and combinations of geometric series, making the geometric series formula a convenient tool for calculating formulas for those power series as well. [13] [14] As a power series, the geometric series has a radius of convergence of 1. [15]

  6. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    Since Fourier series have such good convergence properties, many are often surprised by some of the negative results. For example, the Fourier series of a continuous T-periodic function need not converge pointwise. The uniform boundedness principle yields a simple non-constructive proof of this fact.

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    More sophisticated types of convergence of a series of functions can also be defined. In measure theory, for instance, a series of functions converges almost everywhere if it converges pointwise except on a set of measure zero. Other modes of convergence depend on a different metric space structure on the space of functions under consideration.

  8. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor series is defined for a function which has infinitely many derivatives at a single point, whereas the Fourier series is defined for any integrable function. In particular, the function could be nowhere differentiable. (For example, f (x) could be a Weierstrass function.) The convergence of both series has very different properties.

  9. Conditional convergence - Wikipedia

    en.wikipedia.org/wiki/Conditional_convergence

    A classic example is the alternating harmonic series given by + + = = +, which converges to ⁡ (), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem .