Search results
Results from the WOW.Com Content Network
In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.
In mathematics, vector algebra may mean: The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space
An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry (which makes the concept of a group useful in this context).
Al-Jabr (Arabic: الجبر), also known as The Compendious Book on Calculation by Completion and Balancing (Arabic: الكتاب المختصر في حساب الجبر والمقابلة, al-Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah; [b] or Latin: Liber Algebræ et Almucabola), is an Arabic mathematical treatise on algebra written in Baghdad around 820 by the Persian polymath ...
In classical electromagnetism, magnetic vector potential (often called A) is the vector quantity defined so that its curl is equal to the magnetic field: =.Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well.
A subset of a vector space is called a cone if for all real >,.A cone is called pointed if it contains the origin. A cone is convex if and only if +. The intersection of any non-empty family of cones (resp. convex cones) is again a cone (resp. convex cone); the same is true of the union of an increasing (under set inclusion) family of cones (resp. convex cones).
In mathematics, a versor is a quaternion of norm one (a unit quaternion).Each versor has the form = = + , =, [,], where the r 2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions).
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.