enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hill climbing - Wikipedia

    en.wikipedia.org/wiki/Hill_climbing

    Random-restart hill climbing is a meta-algorithm built on top of the hill climbing algorithm. It is also known as Shotgun hill climbing . It iteratively does hill-climbing, each time with a random initial condition x 0 {\displaystyle x_{0}} .

  3. Min-conflicts algorithm - Wikipedia

    en.wikipedia.org/wiki/Min-conflicts_algorithm

    One such algorithm is min-conflicts hill-climbing. [1] Given an initial assignment of values to all the variables of a constraint satisfaction problem (with one or more constraints not satisfied), select a variable from the set of variables with conflicts violating one or more of its constraints.

  4. Iterated local search - Wikipedia

    en.wikipedia.org/wiki/Iterated_local_search

    Iterated Local Search [1] [2] (ILS) is a term in applied mathematics and computer science defining a modification of local search or hill climbing methods for solving discrete optimization problems. Local search methods can get stuck in a local minimum , where no improving neighbors are available.

  5. Local search (constraint satisfaction) - Wikipedia

    en.wikipedia.org/wiki/Local_search_(constraint...

    Hill climbing algorithms can only escape a plateau by doing changes that do not change the quality of the assignment. As a result, they can be stuck in a plateau where the quality of assignment has a local maxima. GSAT (greedy sat) was the first local search algorithm for satisfiability, and is a form of hill climbing.

  6. Stochastic hill climbing - Wikipedia

    en.wikipedia.org/wiki/Stochastic_hill_climbing

    Stochastic hill climbing is a variant of the basic hill climbing method. While basic hill climbing always chooses the steepest uphill move, "stochastic hill climbing chooses at random from among the uphill moves; the probability of selection can vary with the steepness of the uphill move."

  7. Beam search - Wikipedia

    en.wikipedia.org/wiki/Beam_search

    Conversely, a beam width of 1 corresponds to a hill-climbing algorithm. [3] The beam width bounds the memory required to perform the search. Since a goal state could potentially be pruned, beam search sacrifices completeness (the guarantee that an algorithm will terminate with a solution, if one exists).

  8. Snake catcher delighted by python’s ‘incredible’ climbing ...

    www.aol.com/lifestyle/snake-catcher-delighted...

    For premium support please call: 800-290-4726 more ways to reach us

  9. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    An intuitive explanation of the algorithm from "Numerical Recipes": [5] The downhill simplex method now takes a series of steps, most steps just moving the point of the simplex where the function is largest (“highest point”) through the opposite face of the simplex to a lower point.