Search results
Results from the WOW.Com Content Network
Random-restart hill climbing is a meta-algorithm built on top of the hill climbing algorithm. It is also known as Shotgun hill climbing . It iteratively does hill-climbing, each time with a random initial condition x 0 {\displaystyle x_{0}} .
One such algorithm is min-conflicts hill-climbing. [1] Given an initial assignment of values to all the variables of a constraint satisfaction problem (with one or more constraints not satisfied), select a variable from the set of variables with conflicts violating one or more of its constraints.
Hill climbing algorithms can only escape a plateau by doing changes that do not change the quality of the assignment. As a result, they can be stuck in a plateau where the quality of assignment has a local maxima. GSAT (greedy sat) was the first local search algorithm for satisfiability, and is a form of hill climbing.
Iterated Local Search [1] [2] (ILS) is a term in applied mathematics and computer science defining a modification of local search or hill climbing methods for solving discrete optimization problems. Local search methods can get stuck in a local minimum , where no improving neighbors are available.
Conversely, a beam width of 1 corresponds to a hill-climbing algorithm. [3] The beam width bounds the memory required to perform the search. Since a goal state could potentially be pruned, beam search sacrifices completeness (the guarantee that an algorithm will terminate with a solution, if one exists).
An intuitive explanation of the algorithm from "Numerical Recipes": [5] The downhill simplex method now takes a series of steps, most steps just moving the point of the simplex where the function is largest (“highest point”) through the opposite face of the simplex to a lower point.
Stochastic hill climbing is a variant of the basic hill climbing method. While basic hill climbing always chooses the steepest uphill move, "stochastic hill climbing chooses at random from among the uphill moves; the probability of selection can vary with the steepness of the uphill move."
When applicable, a common approach is to iteratively improve a parameter guess by local hill-climbing in the objective function landscape. Derivative-based algorithms use derivative information of to find a good search direction, since for example the gradient gives the direction of steepest ascent. Derivative-based optimization is efficient at ...