Search results
Results from the WOW.Com Content Network
Under the assumption of normality of returns, an active risk of x per cent would mean that approximately 2/3 of the portfolio's active returns (one standard deviation from the mean) can be expected to fall between +x and -x per cent of the mean excess return and about 95% of the portfolio's active returns (two standard deviations from the mean) can be expected to fall between +2x and -2x per ...
The MPT is a mean-variance theory, and it compares the expected (mean) return of a portfolio with the standard deviation of the same portfolio. The image shows expected return on the vertical axis, and the standard deviation on the horizontal axis (volatility). Volatility is described by standard deviation and it serves as a measure of risk. [7]
R M = return on the market portfolio σ M = standard deviation of the market portfolio σ P = standard deviation of portfolio (R M – I RF)/σ M is the slope of CML. (R M – I RF) is a measure of the risk premium, or the reward for holding risky portfolio instead of risk-free portfolio. σ M is the risk of the market portfolio. Therefore, the ...
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
The risk-free return is constant. Then the Sharpe ratio using the old definition is = = Example 2. An investor has a portfolio with an expected return of 12% and a standard deviation of 10%. The rate of interest is 5%, and is risk-free.
In modern portfolio theory, the efficient frontier (or portfolio frontier) is an investment portfolio which occupies the "efficient" parts of the risk–return spectrum. Formally, it is the set of portfolios which satisfy the condition that no other portfolio exists with a higher expected return but with the same standard deviation of return (i ...
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.
Common measures of statistical dispersion are the standard deviation, variance, range, interquartile range, absolute deviation, mean absolute difference and the distance standard deviation. Measures that assess spread in comparison to the typical size of data values include the coefficient of variation.