enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  3. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Knitro is a solver specialized in nonlinear optimization, but also solves linear programming problems, quadratic programming problems, second-order cone programming, systems of nonlinear equations, and problems with equilibrium constraints. FICO Xpress

  4. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    MINTO – integer programming solver using branch and bound algorithm; freeware for personal use. MOSEK – a large scale optimization software. Solves linear, quadratic, conic and convex nonlinear, continuous and integer optimization. OptimJ – Java-based modelling language; the free edition includes support for lp_solve, GLPK and LP or MPS ...

  5. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.

  6. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method. SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable , but not necessarily convex.

  7. Chakravala method - Wikipedia

    en.wikipedia.org/wiki/Chakravala_method

    The chakravala method (Sanskrit: चक्रवाल विधि) is a cyclic algorithm to solve indeterminate quadratic equations, including Pell's equation.It is commonly attributed to Bhāskara II, (c. 1114 – 1185 CE) [1] [2] although some attribute it to Jayadeva (c. 950 ~ 1000 CE). [3]

  8. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    If M is positive definite, any algorithm for solving (strictly) convex QPs can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as Lemke's algorithm and a variant of the simplex algorithm of Dantzig have been used for decades. Besides having polynomial time complexity, interior-point methods are also effective in practice.

  9. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Qin Jiushao's algorithm for solving the quadratic polynomial equation + = result: x =840 [ 11 ] Horner's paper, titled "A new method of solving numerical equations of all orders, by continuous approximation", [ 12 ] was read before the Royal Society of London, at its meeting on July 1, 1819, with a sequel in 1823. [ 12 ]