Search results
Results from the WOW.Com Content Network
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The ideal gas model has been explored in both the Newtonian dynamics (as in "kinetic theory") and in quantum mechanics (as a "gas in a box"). The ideal gas model has also been used to model the behavior of electrons in a metal (in the Drude model and the free electron model), and it is one of the most important models in statistical mechanics.
Enthalpy: H = + J ML 2 T −2 ... (for monatomic ideal gas) = (for diatomic ideal gas) Internal Energy ... Thermodynamic equation calculator This page was last edited ...
where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.
For example, terrestrial air is primarily made up of diatomic gases (around 78% nitrogen, N 2, and 21% oxygen, O 2), and at standard conditions it can be considered to be an ideal gas. The above value of 1.4 is highly consistent with the measured adiabatic indices for dry air within a temperature range of 0–200 °C, exhibiting a deviation of ...
If the calorically perfect gas approximation is used, then the ideal gas law may also be expressed as follows = where is the number density of the gas (number of atoms/molecules per unit volume), = / is the (constant) adiabatic index (ratio of specific heats), = is the internal energy per unit mass (the "specific internal energy"), is the ...
For a gas, it is the hypothetical state the gas would assume if it obeyed the ideal gas equation at a pressure of 1 bar. For a gaseous or solid solute present in a diluted ideal solution , the standard state is the hypothetical state of concentration of the solute of exactly one mole per liter (1 M ) at a pressure of 1 bar extrapolated from ...