Search results
Results from the WOW.Com Content Network
Substitutions usually occur at the 3-position, which is the most electron-rich carbon atom in the ring and is, therefore, more susceptible to an electrophilic addition. substitution in the 2-position substitution in the 3-position Substitution in 4-position. Direct nitration of pyridine is sluggish.
Compared to benzene, the rate of electrophilic substitution on pyridine is much slower, due to the higher electronegativity of the nitrogen atom. Additionally, the nitrogen in pyridine easily gets a positive charge either by protonation (from nitration or sulfonation ) or Lewis acids (such as AlCl 3 ) used to catalyze the reaction.
This reaction is similar to nucleophilic aliphatic substitution where the reactant is a nucleophile rather than an electrophile. The four possible electrophilic aliphatic substitution reaction mechanisms are S E 1, S E 2(front), S E 2(back) and S E i (Substitution Electrophilic), which are also similar to the nucleophile counterparts S N 1 and ...
The direct amination of pyridine with sodium amide can take place in liquid ammonia or an aprotic solvent such as xylene is commonly used. Following the addition elimination mechanism first a nucleophilic NH 2 − is added while a hydride (H −) is leaving. The reaction formally is a nucleophilic substitution of hydrogen S N H.
The partial rate factor of electrophilic aromatic substitution on fluorobenzene is often larger than one at the para position, making it an activating group. [11] Conversely, it is moderately deactivated at the ortho and meta positions, due to the proximity of these positions to the electronegative fluoro substituent.
Ipso-substitution describes two substituents sharing the same ring position in an intermediate compound in an electrophilic aromatic substitution. Trimethylsilyl, tert-butyl, and isopropyl groups can form stable carbocations, hence are ipso directing groups. Meso-substitution refers to the substituents occupying a benzylic position.
Directed ortho metalation (DoM) is an adaptation of electrophilic aromatic substitution in which electrophiles attach themselves exclusively to the ortho-position of a direct metalation group or DMG through the intermediary of an aryllithium compound. [1] The DMG interacts with lithium through a hetero atom.
Synthesis of nucleosides involves the coupling of a nucleophilic, heterocyclic base with an electrophilic sugar. The silyl-Hilbert-Johnson (or Vorbrüggen) reaction, which employs silylated heterocyclic bases and electrophilic sugar derivatives in the presence of a Lewis acid, is the most common method for forming nucleosides in this manner.