Search results
Results from the WOW.Com Content Network
Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter. By Thales' theorem, this is a right triangle with right angle at B. Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the ...
The ratio of a circle's circumference to its diameter is π (pi), an irrational constant approximately equal to 3.141592654. The ratio of a circle's circumference to its radius is 2 π . [ a ] Thus the circumference C is related to the radius r and diameter d by: C = 2 π r = π d . {\displaystyle C=2\pi r=\pi d.}
If you multiply it by pi you get a bigger circumference, because the penis is not totally round, for example , my diameter is 5.7 cm and 5.7*pi= 17.898, my real circumference (measured with a measuring tape) is 17cm -/+ 0.2cm, so the most accurate way of measuring circumference is with a tape, I think. -betoelbicho
In the special cases of one of the diagonals or sides being a diameter of the circle, this theorem gives rise directly to the angle sum and difference trigonometric identities. [17] The relationship follows most easily when the circle is constructed to have a diameter of length one, as shown here.
The bill was nearly passed by the Indiana General Assembly in the U.S., and has been claimed to imply a number of different values for π, although the closest it comes to explicitly asserting one is the wording "the ratio of the diameter and circumference is as five-fourths to four", which would make π = 16 ⁄ 5 = 3.2, a discrepancy of ...
For example, a length that is significantly longer or shorter than 1 metre can be represented in units that are a power of 10 or 1000 metres. This differs from many older systems in which the ratio of different units varied. For example, 12 inches is one foot, but the larger unit in the same system, the mile is not a power of 12 feet. It is ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown.. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them.
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.. An ellipsoid is a quadric surface; that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables.