Search results
Results from the WOW.Com Content Network
Sodium methoxide is prepared by treating methanol with sodium: 2 Na + 2 CH 3 OH → 2 CH 3 ONa + H 2. The reaction is so exothermic that ignition is possible. The resulting solution, which is colorless, is often used as a source of sodium methoxide, but the pure material can be isolated by evaporation followed by heating to remove residual methanol.
The Williamson ether reaction follows an S N 2 (bimolecular nucleophilic substitution) mechanism. In an S N 2 reaction mechanism there is a backside attack of an electrophile by a nucleophile and it occurs in a concerted mechanism (happens all at once).
HSAB is widely used in chemistry for explaining the stability of compounds, reaction mechanisms and pathways. It assigns the terms 'hard' or 'soft', and 'acid' or 'base' to chemical species . 'Hard' applies to species which are small, have high charge states (the charge criterion applies mainly to acids, to a lesser extent to bases), and are ...
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical reaction occurs. [ 1 ] A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction.
A solution of a carbonyl compound is added to a Grignard reagent. (See gallery) An example of a Grignard reaction (R 2 or R 3 could be hydrogen). The Grignard reaction (French:) is an organometallic chemical reaction in which, according to the classical definition, carbon alkyl, allyl, vinyl, or aryl magnesium halides (Grignard reagent) are added to the carbonyl groups of either an aldehyde or ...
Through a variety of mechanisms, the removal of a hydride equivalent converts a primary or secondary alcohol to an aldehyde or ketone, respectively. The oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (gem-diol, R-CH(OH) 2) by reaction with water ...
The Wohl degradation in carbohydrate chemistry is a chain contraction method for aldoses. [1] The classic example is the conversion of glucose to arabinose as shown below. The reaction is named after the German chemist Alfred Wohl (1863–1939).
Two potential reaction mechanisms are shown below: Alkylation of aza enolates via epoxide ring opening of oxetane [ 28 ] Since epoxide is a three-membered ring molecule, it has a high degree of ring strain .