enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier ∀ {\displaystyle \forall } in the first order formula ∀ x P ( x ) {\displaystyle \forall xP(x)} expresses that everything in the domain satisfies the property denoted by P ...

  3. Quantifier - Wikipedia

    en.wikipedia.org/wiki/Quantifier

    Quantifier may refer to: Quantifier (linguistics), an indicator of quantity; Quantifier (logic) Quantification (science) See also. Quantification (disambiguation)

  4. Universal quantification - Wikipedia

    en.wikipedia.org/wiki/Universal_quantification

    In symbolic logic, the universal quantifier symbol (a turned "A" in a sans-serif font, Unicode U+2200) is used to indicate universal quantification. It was first used in this way by Gerhard Gentzen in 1935, by analogy with Giuseppe Peano's (turned E) notation for existential quantification and the later use of Peano's notation by Bertrand Russell.

  5. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or "(∃x)" [1]). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain.

  6. Lindström quantifier - Wikipedia

    en.wikipedia.org/wiki/Lindström_quantifier

    In other words, each quantifier is a family of properties on dom(A), so each is called a monadic quantifier. Any quantifier defined as an n > 0-ary relation between properties on dom(A) is called monadic. Lindström introduced polyadic ones that are n > 0-ary relations between relations on domains of structures.

  7. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    Example requires a quantifier over predicates, which cannot be implemented in single-sorted first-order logic: Zj → ∃X(Xj∧Xp). Quantification over properties Santa Claus has all the attributes of a sadist. Example requires quantifiers over predicates, which cannot be implemented in single-sorted first-order logic: ∀X(∀x(Sx → Xx) → ...

  8. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!"

  9. Category:Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Category:Quantifier_(logic)

    In semantics and mathematical logic, a quantifier is a way that an argument claims that an object with a certain property exists or that no object with a certain property exists. Not to be confused with Category:Quantification (science) .