Search results
Results from the WOW.Com Content Network
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
List of orders of magnitude for molar concentration; Factor (Molarity) SI prefix Value Item 10 −24: yM 1.66 yM: 1 elementary entity per litre [1]: 8.5 yM: airborne bacteria in the upper troposphere (5100/m 3) [2]
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c {\displaystyle c} : [ 2 ]
One lb-mol is equal to 453.592 37 g‑mol, [6] which is the same numerical value as the number of grams in an international avoirdupois pound. Greenhouse and growth chamber lighting for plants is sometimes expressed in micromoles per square metre per second, where 1 mol photons ≈ 6.02 × 10 23 photons. [7]
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise.
In water solutions containing relatively small quantities of dissolved solute (as in biology), such figures may be "percentivized" by multiplying by 100 a ratio of grams solute per mL solution. The result is given as "mass/volume percentage". Such a convention expresses mass concentration of 1 gram of solute in 100 mL of solution, as "1 m/v %".
The concentrations of standard solutions are normally expressed in units of moles per litre (mol/L, often abbreviated to M for molarity), moles per cubic decimetre (mol/dm 3), kilomoles per cubic metre (kmol/m 3), grams per milliliters (g/mL), or in terms related to those used in particular titrations (such as titres).
sulfuric acid has a molar mass of 98.078(5) g mol −1, and supplies two moles of hydrogen ions per mole of sulfuric acid, so its equivalent weight is 98.078(5) g mol −1 /2 eq mol −1 = 49.039(3) g eq −1. potassium permanganate has a molar mass of 158.034(1) g mol −1, and reacts with five moles of electrons per mole of potassium ...