enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rydberg atom - Wikipedia

    en.wikipedia.org/wiki/Rydberg_atom

    It is now apparent why Rydberg atoms have such peculiar properties: the radius of the orbit scales as n 2 (the n = 137 state of hydrogen has an atomic radius ~1 μm) and the geometric cross-section as n 4. Thus, Rydberg atoms are extremely large, with loosely bound valence electrons, easily perturbed or ionized by collisions or external fields.

  3. Rydberg state - Wikipedia

    en.wikipedia.org/wiki/Rydberg_state

    Rydberg states have energies converging on the energy of the ion. The ionization energy threshold is the energy required to completely liberate an electron from the ionic core of an atom or molecule. In practice, a Rydberg wave packet is created by a laser pulse on a hydrogenic atom and thus populates a superposition of Rydberg states. [3]

  4. Precision tests of QED - Wikipedia

    en.wikipedia.org/wiki/Precision_tests_of_QED

    The Rydberg constant is known to seven parts in a trillion. The mass of the electron relative to that of caesium and rubidium atoms is also known with extremely high precision. If the mass of the electron can be measured with sufficiently high precision, then α can be found from the Rydberg constant according to

  5. Neutral atom quantum computer - Wikipedia

    en.wikipedia.org/wiki/Neutral_atom_quantum_computer

    Atoms that have been excited to very large principal quantum number are known as Rydberg atoms. These highly excited atoms have several desirable properties including high decay life-time and amplified couplings with electromagnetic fields. [19] The basic principle for Rydberg mediated gates is called the Rydberg blockade. [20]

  6. Rydberg matter - Wikipedia

    en.wikipedia.org/wiki/Rydberg_matter

    Rydberg matter [1] is an exotic phase of matter formed by Rydberg atoms; it was predicted around 1980 by É. A. Manykin, M. I. Ozhovan and P. P. Poluéktov. [2] [3] It has been formed from various elements like caesium, [4] potassium, [5] hydrogen [6] [7] and nitrogen; [8] studies have been conducted on theoretical possibilities like sodium, beryllium, magnesium and calcium. [9]

  7. Rydberg molecule - Wikipedia

    en.wikipedia.org/wiki/Rydberg_molecule

    These "near threshold Rydberg states" can have long lifetimes, particularly for the higher orbital angular momentum states that do not interact strongly with the ionic core. Rydberg molecules can condense to form clusters of Rydberg matter which has an extended lifetime against de-excitation. Dihelium (He 2 *) was the first known Rydberg ...

  8. Rydberg ionization spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Rydberg_ionization...

    However, it can be possible to span this ionization threshold energy if the photon energy is resonant with an intermediate electronically excited state. While it is often possible to observe the lower Rydberg levels in conventional spectroscopy of atoms and small molecules, Rydberg states are even more important in laser ionization experiments ...

  9. Rydberg constant - Wikipedia

    en.wikipedia.org/wiki/Rydberg_constant

    The hydrogen spectral series can be expressed simply in terms of the Rydberg constant for hydrogen and the Rydberg formula. In atomic physics , Rydberg unit of energy , symbol Ry, corresponds to the energy of the photon whose wavenumber is the Rydberg constant, i.e. the ionization energy of the hydrogen atom in a simplified Bohr model.